Reference Patient	He	eredity	NA change	Protein	Age Vea	r) Sex	Mutati	on elligence	Autism	Seizure	Tuber	SEN	SEG	AHP	MAF	PU	r ShgP	AML RCC	Rena	A CR	Others
	_		Dra	·		•	14. 19 h	Im		-	,	~	Ŷ	ŕ	-	-	÷		0.	-	-
Wilson (1996) TSC-382	F	TSC2 exon 16	1849C>T	R611W			ММ	MR		+		CT (+)		+	+	+	+	Renal			Eye ()
Ali (2004)																		a0 (+)			
TS-07	S	TSC2 exon 16	1832G>A	R611Q	9		MM	MR (-)	NA	+	NA	NA	NA	+	+	-	+	NA		NA	
TS-23	S	TSC2 exon 16	1831C>T	R611W	2		MM	MR	+	+	+	+	-	+	-	-	+	NA		NA	
Hung (2006)																					
29 7harra (1000)	S	TSC2 exon 16	1832G>A	R611Q		t	MM	MR		+	+			+	-	-	+	-			
Znang (1999)	F	TSC2 evon 16	18500~ 1	P6110	6	f	мм	MP()													
Beauchamp (1998)	, г	13C2 ex01110	1650 0 2A	KONQ	0	1	IVIIVI	MIK(-)		+		+		+	-						
F03-01	, F	TSC2 exon 16	1832G>A	R611Q	5		MM	MR()		+	Brain find- ings (+)			+	-	-	-	-		-	
Hung (2006)											0.()										
82	S	TSC2 exon 17	1939G>A	D647N		m	MM	MR (-)		+	-			-	-	-	-	-			
Zhang (1999)																					
32	S	TSC2 exon 17	1957G>A	D647N	2	m	MM	NA		+		+		+	NA						
Zhang (1999)	Б	TEC2 aven 20	2224T> C	V760E	4.4	£	мм	MD (11)		NIA		NIA									
21	г с	TSC2 exon 20	23241>G	V /09E	44 32	I	MM	MR (++)		NA		NA		+	+						
Z Verhoef (1999)	3	13C2 ex01120	2324120	V 709E	52	III	IVIIVI	MIK (++)		т		Ŧ		т	т						
Family 3 sib 1	F	TSC2 intron 20	2374-2 A>C			f	SP	Moderate MF		+		(+)?		+	+		+			+	
Family 3 sib 2	F	TSC2 intron 20	2374-2 A>C			f	SP	Severe MR		+		(+)?			+	+		+		+	
Beauchamp (1998))																				
F08-01	F	TSC2 exon 23	2714G>A	R905Q	10		MM	MR (-)		+	Normal	Norma	1	+	+	+	+	NA		NA	
Jansen (2006)																					
Family A $(n = 2)$	25) F	TSC2 exon 23	2714G>A	R905Q	6		MM	MR (-) 12,		15/25	5/15	1	1	23/				1	1	0/	0/
					-			LD I0, mild CL 2			WML			25						12	16
Equally B $(n-3)$	а Б	TSC2 exon 23	2714654	R9050	NA		мм	MR (_) 1		2	2			3	1			NA		NA	
Taning $D(n = 3)$, 1	1562 6701 25	27140271	Roosq	1 12 1		141141	mild CI 2		2	2			5	1			1111		1421	
Family C $(n = 9)$) F	TSC2 exon 23	2714G>A	R905Q	NA		MM	MR (-) 6,		6	1/1			8	1	2	2			1/1	
								impaired 1,			examined									exam-	
								severe CI 1												ined	
Family D ($n = 1$) F	TSC2 exon 23	2714G>A	R905Q	NA		MM	MR (-)		+	-			+			+	NA	NA	NA	
Family $E(n = 1)$) F	TSC2 exon 23	2714G>A	R905Q	NA		MM	MR (-)		+	abn			+				-	-	-	
P1	S	TSC2 exon 23	2713C>T	R905W	NA		MM	NA		- D ::// 1	+	+		+	+			NA	NA	NA	
P2 D2	S	TSC2 = exon 23	2/13C>1 2712C>T	K905W	NA NA		MM	Mild CI Moderate CI		Activo	+	+		+	+		+	-	-	-	Ketinal HM
гэ Р4	0	TSC2 exon 23	2713C>1	R905W	INA NA		MM	Severe CI		Active I CS	+ 1	+		+				_	_	+	
14 P5	5	TSC2 exon 23	2713C>T	R905W	NA		MM	MR(-)		_	+	т	+	т +	+			_	+	_	
P6	S	TSC2 exon 23	2713C>T	R905W	NA		MM	Severe CI		+	+	+		+	+			_		NA	
P7	S	TSC2 exon 23	2713C>T	R905W	NA		MM	Severe CI		+	NA	NA	NA		·			NA	NA	NA	
P8	S	TSC2 exon 23	2713C>T	R905W	NA		MM	Mild CI		Remitted IS	S+	+		+	+	+	+	+	_	NA	

Table 5. TSC patients with identical mutations in the literature [iii]

Table 5, continued to the next page. Footnotes, refer to Table 5 [vii], end of this table.

Reference Patient	He	redity	DNA change	Protein	Age Ve	ar) Sex	Mutati	on Intelligence	Autism	Seizure	Tuber	SEN	SEGI	A HP	MAF	PUT	ShgP	AML	RCC Rena	CR	Others
Au (1998)																					
TS95-12		TSC2 exon 23	2713C>T	R905W			MM	MR		+	+	+		+	-	-	-	-	-	-	
Yamamoto (2002) 8	s	TSC2 exon 23	2713C>T	R905W	21	f	ММ	IQ 40		+	+	+		+	+				Renal tumor		
Yamashita (2000)																					
1		TSC2 exon 23	2713C>T	R905T			MM	Moderate MF	2	IS				+	+						
Yamamoto (2002)																					
7	S	TSC2 exon 23	2713C>G	R905G	3	m	MM	Neurological symptoms (+)		IS	+	+		+						+	
Hung (2006)																					
64	S	TSC2 exon 26	2974C>T	Q992X		m	NM	MR (-)		+	+			+	-	-	-	-			
Beauchamp (1998)	0	T9C2 2(20740 5	000237	_						D · C I										
\$17-01	S	TSC2 exon 26	29/4C>1	Q992X	5		NM	Moderate MF		+	Brain find- ings (+)			+	+	-	-	-		NA	Retinal findings (+)
The present study											0.()										8 8 ()
Patient 4	s	TSC2 exon 28	3355C>T	Q1119X	8	f	NM	DQ 17	+	IS	+	+		+	+			_		+	
Feng (2004), the pre	sen	t study																			
4, Patient 5	S	TSC2 exon 28	3355C>T	Q1119X	23	f	NM	MR (-)	_	Febrile Sz	NA	+		-	-			+	Renal		Liver AML
																			tumor		
Humphrey (2004)																					
Twin A	F	TSC2 exon 29	3043delC	truncation	3	m	FS	DQ 45	+	Partial Sz	Extensive										
т : р	F	T9C2 20	2042110	1210?	2		FC	DO 71		10											
Twin B	F	TSC2 exon 29	3043delC	truncation	3	m	FS	DQ	Partial	15	+										
Wilcon (1006)				1210?																	
TSC-001-1 fathe	· F	TSC2 evon 20	3616C\T	R1100W		m	мм		Beh/	т	MRI (_)	CT		т							
15C-001-1 lattic		1302 (20112)	5010C21	KIIJJW		m	IVIIVI			т	MIKI (-)	CI (-)		т			_				
TSC-001-2 sib	F	TSC2_exon 29	3616C>T	R1199W			мм				MRI (+)	CT (-)		+	+	_					
TSC-001-3 sib	F	TSC2 exon 29	3616C>T	R1199W			MM	MR		+	MRI (-)	CT (-)		+	_	_	+				Eve (-)
Lyczkowski (2007)												- ()									
D-I-1	F	TSC2 exon 33	4422-4423del		NA	m	FS	NA		Controlled	NA	NA	NA	+				NA	NA NA	NA	
D-II-2	F	TSC2 exon 33	4422-4423del		NA	m	FS	NA		Controlled	NA	NA	NA	+				NA	NA <mark>NA</mark>	NA	
D-II-3	F	TSC2 exon 33	4422-4423del		NA	f	FS	NA		Controlled	NA	NA	NA	+				NA	NA <mark>NA</mark>	NA	
D-III-1	F	TSC2 exon 33	4422-4423del		9	f	FS	NA		IS	39	+	+	+	+			_		+	
D-III-2	F	TSC2 exon 33	4422-4423del		6	f	FS	IQ 85		IS	+	+	+	+	+			_		+	
D-III-3	F	TSC2 exon 33	4422-4423del		3	m	FS	IQ 101		IS	49	+	+	+				+			

Table 5. TSC patients with identical mutations in the literature [iv]

Table 5, continued to the next page. Footnotes, refer to Table 5 [vii], end of this table.

Reference		adity	hange	nin	Age	-D	ń	on rence	·m	ure	4	1						۵.		anal		<i>.</i>
Patient	He	ice	DNA CIL	Protes	'de	Sex Sex	Mutat	Intellige	Autio	Seille	Tuber	SEN	SEC	HP	AF	PU	r Sher	AML	RCC	KO'S	CR	Other
Niida (1999)													-				-					
171	S	TSC2 exon 33	4421-4422del	R1474fs 1521X			FS	MR		+	Brain			+	+	+	+	NA		NA	NA	
311	S	TSC2 exon 33	4422-4423del	R1474fs			FS	MR (-)		+	Brain			+	-	-	-	NA		NA	NA	
Niida (1999)				15217							illiage (+)											
187	F	TSC2 exon 33	4375C>T	R1459X			NM	MR		+	Brain image (+)			+	+	-	+	-		-	+	Retinal HM
Zhang (1999), the pr	ese	nt study																				
6, Patient 6	F	TSC2 exon 33	4393C>T	R1459X	18	m	NM	IQ 33	+	Controlled	+	+		NA	NA			+				
8, Patient 7	S	TSC2 exon 33	4393C>T	R1459X	19	f	NM	IQ 41	+	Surgery	+	+		+	+			+				
Smalley (1994)								-		0.1												
<i>n</i> = 17	F	TSC2 exon 34	4508A>C	Q1503P			MM	IQ<70 4/17			() in 10	-										Psychiatric disorder 13/17
Wilson (1996)																						
TSC-422-1	F	TSC2 exon 34	4519–4547 dup	L1510fs 1541X			FS	MR		+		CT (+)		+	+	-	+	Rena ab (+	1			Eye ()
TSC-422-2	F	TSC2 exon 34	4519–4547 dup	L1510fs 1541X			FS	NA		-				+	+	+	+	Rena ab(+)	1			Eye ()
Jansen (2006)																						
Family F II-3	F	TSC2 exon 35	4642G>A	E1542K			MM	MR (-)		_	+			+	+	+		+				
Family F III-3	F	TSC2 exon 35	4642G>A	E1542K			MM	MR (-)		_	+			+	+	_						
Family F III-5	F	TSC2 exon 35	4642G>A	E1542K			MM	MR (-)		_	+			+	+	_						
Family F IV-3	F	TSC2 exon 35	4642G>A	E1542K			MM	MR (-)		+	+			+	+	_						
Family F IV-4	F	TSC2 exon 35	4642G>A	E1542K			MM	MR (-)		_	+			+	+	_						
Family F IV-7	F	TSC2 exon 35	4642G>A	E1542K			MM	MR (-)		_	+		+	+	+	_						
Family F IV-8	F	TSC2 exon 35	4642G>A	E1542K			MM	MR (-)		_	+			+	+	_						
Family F IV-9	F	TSC2 exon 35	4642G>A	E1542K			MM	MR (-)		_	+			+	+	-						
Family F V-3	F	TSC2 exon 35	4642G>A	E1542K			MM	MR (-)		+	+			_	_	-						
Family F V-4	F	TSC2 exon 35	4642G>A	E1542K			MM	MR (-)		_	+			_	_	-						
Lyczkowski (2007)																						
E-I-1	F	TSC2 exon 35	4662G>A	1554Q	62	m	SP	IQ 106		NA	7	+	+					NA	NA	NA	NA	
E-II-1	F	TSC2 exon 35	4662G>A	1554Q	39	f	SP	IQ 115		NA	12	+						NA	NA	NA	NA	
E-II-2	F	TSC2 exon 35	4662G>A	1554Q	38	m	SP	NA		None		+	+		+			+		+		Hepatic cyst
E-II-4	F	TSC2 exon 35	4662G>A	1554Q	34	f	SP	IQ 105		NA	8	+						NA	NA	NA	NA	
E-III-1	F	TSC2 exon 35	4662G>A	1554Q	5	m	SP	IQ 102		Controlled	14	+	+	+	+		+	-	-	-	+	Retinal pigment
E-III-2	F	TSC2 exon 35	4662G>A	1554Q	3	m	SP	IQ 121		None	18	+	+	+	+			-	_	-	-	1 0

Table 5. TSC patients with identical mutations in the literature [v]

Reference		vity	nge	:0	ve v			n n ^{ce}	~	re,									7	â
Patient	He	reduct	NA chance	Protein	Ver	n) Sex	Mutath	Entelligen	Autistu	Seizure	Tuber	SEN	SEGA	IPM AF	PL	FSheP	AML RC	C Rem	st CR	Others
			V ^r				· ()•	W.							_	_		_	_	
Mayer (2007)																				
IV-3	F	TSC2 exon 36	4684G>A	G1556S	3	m	MM	MR (-)		-		-	+						+	
IV-1	F	TSC2 exon 36	4684G>A	G1556S	12	m	MM	MR (-)?		+	-	-	+				-			
III-3	F	TSC2 exon 36	4684G>A	G1556S		m	MM	MR (-)		-		-	+			+				
III-2	F	TSC2 exon 36	4684G>A	G1556S		f	MM	MR (-)				-	+				+			
Verhoef (1998)																				
Family A	S	TSC2 exon 36	4882 delTT	1628X	14	m	FS	MR (-)		±		+	+	+	+	-			-	Dental pits
Family B	F	TSC2 exon 36	4882 delTT	1628X	18	f	FS	MR (-)		+		+	+	+	+	+	+ –		+	
Family B mother	F	TSC2 exon 36	4882 delTT	1628X	40	f	FS	MR (-)		+		+	+	+	+	+	+ –		+	
Niida (1999)																				
185	s	TSC2 exon 37	4858C>T	H1620Y			MM	MR		+	Brain		+	+	_	+	_	_	NA	
											image (+)									
Au (1998)											0.07									
TS94–53		TSC2 exon 37	4859A>T	N1620I			MM	MR	Beh/	+	+	NA	+	+	_	_	_	±	_	Eve ()
									LD (+)											5. ()
Maheshwar (1997)									~ ~ ~											
n = 4 unrelated	s	TSC2_exon 38	5042C>T	P1675L			ММ	MR () 1		3							1/1			
<i>n</i> = 1, uniciated	5	1002 0.00150	50 1207 1	110/51				moderate MR	1	5							exam-			
								severe MR 2	-,								ined			
Niida (1999)								severe wite 2									mea			
277	S	TSC2 evon 38	5024C>T	P1675I			мм	MR		т	Brain						т		т	Retinal HM
211	9	1962 6701 30	5024021	1 10/31			101101	MIX		1	image (1)								'	Retinal Thy
Zhang (1000)											iiiage (+)									
211alig (1999)	c	TSC2 avon 29	5042C>T	D1675I	2	f	мм	MD						NA						
20 Eana (2004)	3	13C2 ex01138	J042C>1	F10/3L	3	1	IVIIVI	MIK		+		Ŧ	+	INA						
reng (2004)	Б	TEC2 aven 29	5042C>T	D1675I	15	£	M	Savana MD												
/	г	15C2 exon 58	5042C>1	P10/3L	15	1	IVIIVI	Severe MK												
Hung (2006)	G	TGC2 40	5007C . T	D 174011													(.)9			
4	S	1SC2 exon 40	522/C>I	R1/43W		m	MM	MR (-)		+	+		+	+	-	+	(+)?			
50	S	1SC2 exon 40	5227C>I	R1/43W		m	MM	MK		+	+		+	+	-	+	NA			
Choi (2006)	_						_													
12	S	TSC2 exon 40	5227–5244 del	R1743–		m	IF			+	Tuber/		+					+	+	Retinal HM
				K1748 del							SEN (-)									
13	S	TSC2 exon 40	5227–5244 del	R1743–		m	IF			+	Tuber/		+						+	
				K1748 del							SEN (+)									
Martin (2003)																				
Twin M	F	TSC2 exon 40	5256–73 del	1740–	6	m	IF	Severe MR		IS		+	+	+			+	+		
				1745 del																
Twin T	F	TSC2 exon 40	5256–73 del	1740–	6	m	IF	Severe MR		Partial Sz	+	+	+	+		+	+		+	
				1745 del																

Table 5. TSC patients with identical mutations in the literature [vi]

Table 5, continued to the next page. Footnotes, refer to Table 5 [vii], end of this table.

Reference		sitt	nge	:0	, _d e			an nce	2	rP)								al		C.
Patient	He	reduct	DNA chart	Protein	Vea	r) Sex	Mutat	e Intelligen	Autistu	Seizure	Tuber	SEN	SEGA	IPM AF	PU	F _{ShgP}	AML	RCC Relieves	CR	Others
Rok (2005)																				
Patient A	s	TSC2 exon 40	5238–5255 del	del 1746 HIKRLR	10	f	IF	MR(+)		Partial Sz	+	+	+	+	-	-	+	-	+	
Patient B	S	TSC2 exon 40	5238–5255 del	del 1746 HIKRLR	9	m	IF	MR(+)		IS	+	+	+	+	-	-	+	-	-	Retinal HM
Patient C	S	TSC2 exon 40	5238–5255 del	del 1746 HIKRLR	9	f	IF	MR(-)		IS	+	+	+	+	-	+	+	-	+	
Patient D	S	TSC2 exon 40	5238–5255 del	del 1746 HIKRLR	1.5	?	IF	MR(-)		IS	+	+	+	-	-	-	-	-	+	
Dabora (2001)																				
<i>n</i> = 9		TSC2 exon 40	5238–5255 del	del 1746 HIKRLR	7 _		IF	MR none– severe		All (+)				None- severe	-		None- exten-	-		
					28												sive			
Niida (1999)																				
113	s	TSC2 exon 40	5328–5255 del	H1746Q/ 1747–52 del			MM/ IF	MR (-)		-	NA		+	+	+	-	+	-	-	
Hung (2006)																				
10	s	TSC2 exon 40	5238-5255 del			f		LD		+	+		+	+	_	_	_			
25	s	TSC2 exon 40	5238-5255 del			m		LD		+	+		+	+	_	+	_			
Beauchamp (1998)																				
S18-01	S	TSC2 exon 40	5328–5255 del	H1746Q/ 1747–52 del	9		MM/ IF	Mild MR		+	Brain find- ings (+)		+	+	+	+	+		+	
The present study											0.17									
Patient 8	s	TSC2 exon 40	5238–5255 del	del 1746 HIKRLR	3	m	IF	Moderate– severe MR	-	IS	+	+	+	+			-		+	
Patient 9	s	TSC2 exon 40	5238–5255 del	del 1746 HIKRLR	6	f	IF	Severe MR	+	IS, partial Sz	+	+	+	-			-			
Patient 10	S	TSC2 exon 40	5238–5255 del	del 1746 HIKRLR	13	m	IF	Moderate MR	Partial	IS	+	+	+	-			-	+		
Lyczkowski (2007)																				
B-II-1 (twin)	F	TSC2 IVS1, exon 1	1838 bp del		6	f	del	IQ 85		Occasional	65	+	+	+			+	+	+	
B-II-2 (twin)	F	TSC2 IVS1, exon 1	1838 bp del		6	f	del	IQ < 42		IS	60	+		+		+	+	+	+	

Table 5. TSC patients with identical mutations in the literature [vii]

-, absent; +, present; ab, abnormality; AF, angiofibroma; AML, angiomyolipoma; Beh, behavioral problems; CI, cognitive impairment; CR, cardiac rhabdomyoma; DQ, developmental quotient; f, female; F, familial; FS, frameshift; HM, hamartoma; HPM, hypopigmented macule; IF, in-frame deletion; IS, infantile spasms; IVS, intervening sequence within an intron; LD, learning disability; LGS, Lennox-Gastaut syndrome; m, male; MM, missense mutation; MR, mental retardation; NA, not available; NM, nonsense mutation; PUF, periungual fibroma; RCC, renal cell carcinoma; S, sporadic; SEGA, subependymal giant cell astrocytoma; SEN, subependymal nodule; s/o, suspect of; ShgP, Shagreen patch; SP, splice mutation; Sz, seizure; TSC, tuberous sclerosis complex; Var, variable; WML, white matter lesion.

Discussion

Previous studies report that either TSC1 or TSC2 mutations are found in 70% to 80% of TSC patients (Hung et al., 2006; Au et al., 2007). The relatively low proportion of positive results in our series may have resulted from a selection bias that doctors in charge of patients with ambiguous clinical phenotype tend to ask the genetic analysis to confirm the diagnosis. However, mutations could be detected even in individuals with partial expression of TSC phenotype, for example, Patient 5 who did not show any cutaneous symptoms.

Some factors have been elucidated that could explain the variability of clinical manifestations in TSC patients, particularly neurological symptoms. These include the mutated gene (TSC1 versus TSC2) (Dabora et al., 2001; Lewis et al., 2004; Sancak et al., 2005; Au et al., 2007), somatic mosaicism, history of infantile spasms (Lewis et al., 2004), and the number and volume of cortical tubers (Jansen et al., 2008). Higher prevalence of severe intellectual disability in TSC patients with TSC2 mutations rather than TSC1 mutations may be related to the fact the tuberin plays a critical role in the phosphorylation of mTOR through its GAP activity and hamartin binds to tuberin and stabilizes the latter (Chong-Kopera et al., 2006). Somatic mosaicism in parents can explain the emergence of more severe phenotypes in their children (Rose et al., 1999). Certain aspects of the data in our series of patients with identical mutations may be related to these mechanisms. However, somatic mosaicism cannot explain the mild phenotype of Patient 2, who was born to an affected TSC mother. In addition, the basis for the differential manifestation of epilepsy and cortical tuber load between siblings, monozygotic twins, and members within a single family, remains unclear. As for the two-hit theory, the second hit as somatic mutations have been detected in angiomyolipoma and giant cell astrocytoma of TSC patients, but not in ungual fibroma, pulmonary lymphangiomyolipomatosis, and cortical tubers (Niida et al., 2001; Mizuguchi et al., 2004).

Pathogenic significance of haploinsufficiency in tumor-suppressive genes has been also assumed in neurofibromatosis 1 (Easton et al., 1993; Henske et al., 1996), where marked intrafamilial variation is prevalent similarly to TSC. Apparently there are other factors that modulate the phenotype of individual TSC genotypes. These may include somatic mutation in other factors within the mTOR and other signaling pathways, and genetic background related to the epileptogenesis, or activation of the inflammatory system (Boer et al., 2008). In addition, the significance and pathogenesis of mTOR pathway in the synaptic plasticity (Kelleher et al., 2004), and decreased volume of subcortical gray matter (Ridler et al., 2007) in TSC patients need to be further explored to understand the variability of neurological manifestations.

Most of the TSC1 mutations, and 2/3 of TSC2 mutations, causes truncation of the gene product proteins (Au et al., 2007). The data in the identical mutation list (Table 5) correlate with this overall tendency. As shown in this list, most of the mutations of TSC1/TSC2 genes in patients with mild intellectual disability are missense mutations. Relatively preserved tuberin-hamartin complex function may explain the mild phenotype in certain cases with missense mutations (Jansen et al., 2006). In addition, given that the proportion of missense mutations is relatively high in the GAP domain (Au et al., 2007), which has an essential role in the tuberin function, this type of mutations outside the GAP domain might remain subclinical and regarded as polymorphism. On the other hand, various truncating mutations of TSC2 gene, whose GAP domain either preserved or untranslated, can result in both mild and severe intellectual and behavioral disabilities. This again supports that other factors than the truncated gene product itself play critical roles in the determination of neurological phenotype.

Accumulation of mutation data with detailed clinical information is mandatory for a better understanding of genotype-phenotype correlation and the exploration of background mechanism. However, the mutation database and individual journal articles are often insufficient for collecting clinical data and draw reliable conclusion. Due to the aforementioned modifying factors of TSC phenotypes, interpretation of mutation data in individual patient is most confusing. We hope that the review data in this article would help the assessment of mutations and provide research interest by doctors and investigators.

Acknowledgments: We thank Dr. Shinjiro Akaboshi (Division of Pediatrics, Tottori Medical Center), Dr. Mari Kaneda (Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University), Dr.Jun Tohyama (Division of Pediatrics, Nishi-Niigata Chuo National Hospital), Dr. Masako Kubo (Department of Pediatric Surgery, Yamanashi Prefectural Central Hospital), Dr. Ichiro Suzaki (Division of Pediatrics, Tottori Prefectural Kousei Hospital), Drs. Saori Tanabe and Takashi Shiihara (Division of Pediatrics, Nihonkai General Hospital), Dr. Nobuaki Iwasaki (Department of Pediatrics, Ibaraki Prefectural University of Health Science) and Dr. Yoshihiro Maegaki (Division of Child Neurology, Tottori University), for providing the clinical information of each patient.

References

- 1 Ali M, Girimaji SC, Markandaya M, Shukla AK, Sacchidanand S, Kumar A. Mutation and polymorphism analysis of TSC1 and TSC2 genes in Indian patients with tuberous sclerosis complex. Acta Neurol Scand 2005;111:54–63.
- 2 Au KS, Rodriguez JA, Finch JL, Volcik KA, Roach ES, Delgado MR, et al. Germ-line mutational analysis of the TSC2 gene in 90 tuberous-sclerosis patients. Am J Hum Genet 1998;62:286–294.
- 3 Au KT, Williams AT, Roach ES, Batchelor L, Sparagana SP, Delgado MR, et al. Genotype/phenotype correlation in 325 individuals referred for a diagnosis of tuberous sclerosis complex in the United States. Genet Med 2007;9:88–100.
- 4 Beauchamp RL, Banwell A, McNamara P, Jacobsen M, Higgins E, Northrup H, et al. Exon scanning of the entire TSC2 gene for germline mutations in 40 unrelated patients with tuberous sclerosis. Hum Mutat 1998;12:408–416.
- 5 Boer K, Jansen F, Nellist M, Redeker S, van den Ouweland AMW, Spliet WGM, et al. Inflammatory processes in cortical tubers and subependymal giant cell tumors of tuberous sclerosis complex. Epilepsy Res 2008;78:7–21.
- 6 Choi JE, Chae JH, Hwang YS, Kim KJ. Mutation analysis of TSC1 and TSC2 in Korean patients with tuberous sclerosis complex. Brain Dev 2006;28:440–446.

- 7 Chong-Kopera H, Inoki K, Li Y, Zhu T, Garcia-Gonzalo FR, Rosa JL, et al. TSC1 stabilizes TSC2 by inhibiting the interaction between TSC2 and the HERC1 ubiquitin ligase. J Biol Chem 2006;281:8313–8316.
- 8 Dabora SL, Jozwiak S, Franz DN, Roberts PS, Nieto A, Chung J, et al. Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet 2001;68:64–80.
- 9 Easton DF, Ponder MA, Huson SM, Ponder BAJ. An analysis of variation in expression of neurofibromatosis (NF) type 1 (NF1): evidence for modifying genes. Am J Hum Genet 1993;53:305–313.
- 10 Feng JH, Yamamoto T, Nanba E, Ninomiya H, Oka A, Ohno K. Novel TSC2 mutations and decreased expression of tuberin in cultured tumor cells with an insertion mutation. Hum Mutat 2004;26:245–250.
- 11 Gomez MR, Kuntz NL, Westmoreland BF. Tuberous sclerosis, early onset of seizures, and mental subnormality: Study of discordant homozygous twins. Neurology 1982;32:604–611.
- 12 Henske EP, Scheithauer BW, Short MP, Wollmann R, Nahmias J, Hornigold N, et al. Allelic loss is frequent in tuberous sclerosis kidney lesions but rare in brain lesions. Am J Hum Genet 1996;59:400–406.
- 13 Humphrey A, Higgins JNP, Yates JRW, Bolton PF. Monozygotic twins with tuberous sclerosis discordant for severity of developmental deficits. Neurology 2004;62:795–798.
- 14 Hung C, Su Y, Chien S, Liou HH, Chen CC, Chen PC, et al. Molecular and clinical analyses of 84 patients with tuberous sclerosis complex. BMC Medical Genetics 2006;7:72.
- 15 Jansen AC, Sancak O, D'Agostino MD, Badhwar AP, Roberts P, Gobbi G, et al. Unusually mild tuberous sclerosis phenotype is associated with TSC2 R905Q mutation. Ann Neurol 2006;60:528–539.
- 16 Jansen FE, Vincken KL, Algra A, Anbeek P, Braams O, Nellist M, et al. Cognitive impairment in tuberous sclerosis complex is a multifactorial condition. Neurology 2008;70:916–923.
- 17 Jobert S, Bragado-Nilsson E, Samolyk D, Pedespan JM, Marchal C, Reichert S, et al. Deletion of 11 amino acids in tuberin associated with severe tuberous sclerosis phenotypes: evidence for a new essential domain in the first third of the protein. Eur J Hum Genet 1997;5:280–287.
- 18 Kelleher III RJ, Govindarajan A, Tonegawa S. Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron 2004;44:59–73.
- 19 Kwiatkowska J, Jozwiak S, Hall F, Henske EP, Haines JL, McNamara P, et al. Comprehensive mutational analysis of the TSC1 gene: observations on frequency of mutation, associated features, and nonpenetrance. Ann Hum Genet 1998;62:277–285.
- 20 Lewis JC, Thomas HV, Murphy KC, Sampson JR. Genotype and psychological phenotype in tuberous sclerosis. J Med Genet 2004;41:203–207.

- 21 Lyczkowski DA, Conant KD, Pulsifer MB, Jarrett DY, Grant PE, Kwiatkowski DJ, et al. Intrafamilial phenotypic variability in tuberous sclerosis complex. J Child Neurol 2007;22:1348–1355.
- 22 Maheshwar MM, Cheadle JP, Jones AC, Myring J, Fryer AE, Harris PC, et al. The GAP-related domain of tuberin, the product of the TSC2 gene, is a target for missense mutations in tuberous sclerosis. Hum Mol Genet 1997;6:1991–1996.
- 23 Martin N, Zügge K, Brandt R, Friebel D, Janssen B, Zimmerhackl LB. Discordant clinical manifestations in monozygotic twins with the identical mutation in the TSC2 gene. Clin Genet 2003;63:427–430.
- 24 Mayer K, Goedbloed M, van Zijl K, Nellist M, Rott H-D. Characterisation of a novel TSC2 missense mutation in the GAP related domain associated with minimal clinical manifestations of tuberous sclerosis. J Med Genet 2004;41:e64.
- 25 Mizuguchi M, Mori M, Nozaki Y, Momoi MY, Itoh M, Takashima S, et al. Absence of allelic loss in cytomegalic neurons of cortical tuber in the Eker rat model of tuberous sclerosis. Acta Neuropathol 2004;107:47–52.
- 26 Niida Y, Lawrence-Smith N, Banwell A, Hammer E, Lewis J, Beauchamp RL, et al. Analysis of both TSC1 and TSC2 for germline mutations in 126 unrelated patients with tuberous sclerosis. Hum Mutat 1999;14:412– 422.
- 27 Niida Y, Stemmer-Rachamimov AO, Logrip M, Tapon D, Perez R, Kwiatkowski DJ, et al. Survey of somatic mutations in tuberous sclerosis complex (TSC) hamartomas suggests different genetic mechanisms for pathogenesis of TSC lesions. Am J Hum Genet 2001;69:493–503.
- 28 Ramesh V. Aspects of tuberous sclerosis complex (TSC) protein function in the brain. Biochem Soc Transac 2003;31:579–583.
- 29 Ridler K, Suckling J, Higgins NJ, de Vries PJ, Stephenson CME, Bolton PF, et al. Neuroanatomical correlates of memory deficits in tuberous sclerosis complex. Cereb Cortex 2007;17:261–271.
- 30 Roach ES, Gomez MR, Northrup H. Tuberous sclerosis complex consensus conference: revised clinical diagnostic criteria. J Child Neurol 1998;13:624-628.
- 31 Rok P, Kasprzyk-Obara J, Dómanska-Pakieła D, Jóźwiak S. Clinical symptoms of tuberous sclerosis complex in patients with an identical TSC2 mutation. Med Sci Monit 2005;11:230–234.
- 32 Rose VM, Au KS, Pollom G, Roach ES, Prashner HR, Northrup H. Germ-line mosaicism in tuberous sclero-

sis: how common? Am J Hum Genet 1999;64:986–992.

- 33 Sancak O, Nellist M, Goedbloed M, Elfferich P, Wouters C, Maat-Kievit A, et al. Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype-phenotype correlations and comparison of diagnostic DNA techniques in Tuberous Sclerosis Complex. Eur J Hum Genet 2005;13:731–741.
- 34 Smalley S, Burger F, Smith M. Phenotypic variation of tuberous sclerosis in a single extended kindred. J Med Genet 1994;31:761–765.
- 35 Swiech L, Perycz M, Malik A, Jaworski J. Role of mTOR in physiology and pathology of the nervous system. Biochim Biohpys Acta 2008;1784:116–132
- 36 Verhoef S, Bakker L, Tempelaars AMP, Hesseling-Janssen ALW, Mazurczak T, Jozwiak S, et al. High rate of mosaicism in tuberous sclerosis complex. Am J Hum Genet 1999;64:1632–1637.
- 37 Verhoef S, Vrtel R, Bakker L, Stolte-Dijkstra I, Nellist M, Begger JH, et al. Recurrent mutation 4882delTT in the GAP-related domain of the tuberous sclerosis TSC2 gene. Hum Mutat 1998;Suppl 1:S85–87.
- 38 Vrtel R, Verhoef S, Bouman K, Maheshwar MM, Nellist M, van Essen AJ, et al. Identification of a nonsense mutation at the 5' end of the TSC2 gene in a family with a presumptive diagnosis of tuberous sclerosis complex. J Med Genet 1996;33:47–51.
- 39 Wilson PJ, Ramesh V, Kristiansen A, Bove C, Jozwiak S, Kwiatkowski DJ, et al. Novel mutations detected in the TSC2 gene from both sporadic and familial TSC patients. Hum Mol Genet 1996;5:249–256.
- 40 Yamamoto T, Pipo JR, Feng JH, Takeda H, Nanba E, Ninomiya H, et al. Novel TSC1 and TSC2 mutations in Japanese patients with tuberous sclerosis. Brain Dev 2002;24:227–230.
- 41 Yamashita Y, Ono J, Okada S, Wataya-Kaneda M, Yoshikawa K, Nishizawa M, et al. Analysis of all exons of TSC1 and TSC2 genes for germline mutations in Japanese patients with tuberous sclerosis: report of 10 mutations. Am J Med Genet 2000;90:123–126.
- 42 Zhang H, Nanba E, Yamamoto T, Ninomiya H, Ohno K, Mizuguchi M, et al. Mutation analysis of TSC1 and TSC2 genes in Japanese patients with tuberous sclerosis complex. J Hum Genet 1999;44:391–396.

Received December 22, 2008; accepted January 6, 2009

Corresponding author: Yuko Sakurai