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Fig. 5.  ES130 suppressed the chemokine production signif-
icantly in the incubation medium of LPS-stimulated mac-
rophages.  Peritoneal macrophages were left untreated or 
treated with ES130 (100 or 200 ng/mL) or crude ES (5000 
ng/mL) for 24 h, and then stimulated with LPS (100 ng/
mL) for 8 h or 24 h.  The incubation medium was ob-
tained, and the levels of 3 chemokines, RANTES, MIP-
2 and IP-10 were quantified by enzyme-linked immuno-
sorbent assay.  Data are expressed as the mean ± SE (n = 
3).  *P < 0.005.  ES, excretory/secretory; IP-10, interferon-
inducible protein 10 kDa; MIP, macrophage inflammatory 
protein; RANTES, regulated on activation normal T cell 
expressed and secreted; RT, reverse transcriptase.  

 RANTES in the medium of macrophages 
stimulated with LPS for 8 h increased nearly 5 
times in the medium after LPS stimulation for 24 
h.  Although the mRNA expression of RANTES 
in macrophages stimulated with LPS for 8 h or 
24 h was not suppressed significantly by ES130 
or crude ES products (Fig.4), the same amount 
of ES130 and crude ES products suppressed the 
RANTES chemokine levels in the medium of 
these macrophages significantly (Fig. 5).
 

 
Discussion

 
Parasite survival may depend on the ability of the 
parasite to modulate the host immune response 
by the release of immunomodulatory molecules 
that protect the organism (Ramaswamy et al., 
1995; Goodridge et al., 2001, 2005).  We purified 
an immunosuppressive factor (ES130) from ES 
products of plerocercoids in the present study and 
found that ES130 inhibits the gene expression of 
IL-1  and TNF-  as well as plerocercoid-immu-
nosuppressive factor reported by Kina et al. (2005).  
Besides, ES130 suppressed the gene expression 
of 3 chemokines, MIP-2, IP-10 and RANTES, in 
LPS-stimulated macrophages. 
 In monocytes or macrophage cell lines, LPS 
has been reported to activate p42/44 (ERK) mito-
gen-activated protein kinase (MAPK) and JNK as 
well as the p38 MAPK cascade (Hambleton et al., 
1996; Carter et al., 1999).  Transcription of c-Fos 
is upregulated by MAPKs, and members of the 
Fos family dimerise with Jun to form the AP-1 
transcription factor, which upregulates transcrip-
tion of a diverse range of genes in macrophages.
 MIP-2 plays an important role in the recrut-
ment of neutrophils.  The MIP-2 promoter is tran-
scriptionally activated in a macrophage cell line 
RAW 264.7 by LPS.  By deletion analysis of the 
MIP-2 promoter region, Kim et al. (2003) showed 
that NF- B and AP-1 binding sites are essential 
for LPS-induced MIP-2 gene expression.  The 
Sp-1 binding element is an important determinant 
of MIP-2 promoter activity, and NF- B, c-Jun and 
Sp-1 can functionally cooperate to elicit maximal 
activation of the promoter (Lee et al., 2005). 
 The p38 MAPK intracellular signaling 
pathway plays a central role in regulating a wide 
range of inflammatory responses in many differ-
ent cells.  In vitro exposure to a novel p38 MAPK 
inhibitor (M39) blocked MIP-2 release from LPS-
stimulated murine and human neutrophils and 
macrophages, and eliminated migration of murine 
neutrophils toward the chemokines MIP-2 and KC 
(Nick et al., 2000).  We previously showed that 
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the ES products from the plerocercoids reduce the 
phosphorylation of MAPK, particularly extracel-
lular signal-regulated kinase 1/2 (ERK1/2) and 
p38 MAPK (Dirgahayu et al., 2002, 2004), which 
may attribute to the suppression of MIP-2 mRNA 
expression.  Besides MAPKs it has been empha-
sized the importance of NF- B for the induction 
of MIP-2 in LPS-activated monocyte-macrophage 
lineage.  However, we found that the ES products 
do not affect LPS-induced nuclear translocation 
of NF- B (Dirgahayu et al., 2004).
 Shin et al. (1994) showed the LPS-response 
elements in RANTES chemokine gene.  Promoter 
regions of RANTES contain an LPS-response 
element, which is composed of 2 sequences, one 
corresponding to an AP-1 half site and another re-
sembling a portion of interferon (IFN)-stimulated 
response element (ISRE).  There are a number of 
proteins capable of binding to AP-1 sites.  They 
belong to the Jun-Fos family, ATF-CREB family, 
and NF-E2.  Monomeres of these proteins have 
negligible affinity toward the AP-1 site, in contrast 
to their homo- or heterodimers.  The results from 
electrophoretic mobility shift assay demonstrara-
ted the presence of c-Jun and CREB in the prote-
in-LER complex (Shin et al., 1994).  However, the 
ISRE-like motif in RANTES does not have ISRE 
activity.
 Compared to MIP-2 and IP-10, the mRNA 
expression of RANTES in macrophages stimu-
lated with LPS for 8 h or 24 h was not inhibited 
by ES130 or crude ES products, while the same 
amount of ES130 and crude ES products sup-
pressed the RANTES chemokine levels in the 
medium of macrophages significantly stimulated 
with LPS for the same amount of time.  The pro-
duction of RANTES chemokine protein can be 
suppressed by nociceptin in both primary CD14+ 
human monocyte and monocyte-like cell lines.  
However, nociceptin does not appear to regulate 
the expression of the chemokine at the level of 
transcription, as RANTES mRNA levels follow-
ing nociceptin treatment of monocytes were es-
sentially normal (Kaminsky and Rogers, 2008).  
Although the mechanism of RANTES chemokine 

regulation by ES130 is as yet unknown, it is sup-
posed that ES130 plays a role in inhibiting the 
translation, as noiciceptin does.
 In LPS-stimulated macrophages, the IP-10 
expression is mediated by the intermediate pro-
duction of IFN-  in MyD88-independent pathway 
(Kawai et al., 2001; Toshchakov et al., 2002).  
IFN-  activates IFN stimulated gene factor 3, a 
trimeric complex composed of signal transducer 
and activator of transcription (STAT) 1, STAT2 
and IFN regulatory factor-9/p48 (Darnell et al., 
1994).  Consistent with this, LPS-induced ex-
pression of IP-10 is severely impaired in mac-
rophages from STAT1-deficient or IFN- / R–/– 
mice (Ohmori and Hamilton, 2001).  LPS-induced 
transcriptional activation of the IP-10 gene in a 
macrophage cell line is mediated by regulatory 
sequences found in the region between –243 and 
–105 including an ISRE and 2 B sites, and the 
cooperative interaction between ISRE and B ele-
ments is essential for the IP-10 gene expression 
(Ohmori and Hamilton, 2001).  As the IFN-  gene 
expression in LPS-stimulated macrophages is sup-
pressed by crude ES products (data not shown), 
and this suppression is supposed to be one of the 
mechanisms in inhibiting the IP-10 gene expres-
sion by ES130. 
 The present results suggest that ES130 at-
tenuates inflammation around the plerocercoids 
through suppression of the chemokine gene ex-
pressions and chemokine production.  Its mecha-
nism needs to be further investigated. 
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