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SN-38, an active metabolite of a topoisomerase I inhibitor, CPT-11, exhibits a cyto-
toxic effect by inducing apoptosis in cancer cells.  Phosphatidylinositol-3-OH kinase 
(PI3K)-Akt signaling is known to protect a variety of cells from apoptosis.  The rela-
tionship between resistance to SN-38-induced apoptosis and the PI3K-Akt pathway in 
human gastric cancer cells is unknown.  Here, we did an investigation using two gastric 
cancer cell lines, MKN1 and MKN45.  Cell viability was determined by sodium 3'-[1- 
(phenylaminocarbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro) benzene sulfonic 
acid hydrate (XTT) assay.  Apoptosis was confirmed by fluorescence microscopy using 
Hoechst 33342 staining.  Expression levels of phospho-Akt (pAkt) were determined by 
Western blotting.  After being treated with SN-38, the populations of sub-G1 cells were 
induced by flow cytometry in 36.8% of MKN45 cells more frequently than in 13.5% of 
MKN1 cells.  SN-38 inhibited the expression of pAkt dose-dependently in MKN45 cells, 
but not in MKN1 cells.  In MKN1 cells, an additional pretreatment with the PI3K inhibi-
tor, LY294002, led to the inhibition of pAkt expression and induced apoptosis.  The re-
sults suggested that SN-38 induces apoptosis by decreasing PI3K-Akt survival signaling, 
the anti-apoptotic signals, in human gastric cancer cells.  Akt inhibitor might be a useful 
anti-tumor agent in combination with CPT-11.
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Gastric cancer continues to be one of the most com-
mon malignancies in Japan.  While the development 
of diagnostic modalities and surgical techniques has 
improved prognosis, the associated mortality is still 
the second highest in Japan after lung cancer (Edi-
torial Board of the Cancer Statistics in Japan, 2003).  
This mortality is due to lack of effective treatment, 
especially in respect to chemotherapy.

Abbreviations:  DMSO, dimethyl sulfoxide;ID80, dose giving 80% inhibition; NF-κB, nuclear factor-κB; pAkt, 
phospho-Akt; PI3K, phosphatidylinositol-3-OH kinase; PIP2, phosphatidylinositol-3,4-bisphosphate; PIP3, phos-
phatidylinositol-3,4,5-trisphosphate; PTEN, phosphatase and tensin homologue deleted on chromosome 10; TopoI, 
topoisomerase I; XTT, sodium 3'-[1-(phenylaminocarbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro) benzene sul-
fonic acid hydrate 

 New anticancer agents have recently been 
used in gastric cancer therapy.  Camptothecins are 
broad-spectrum anticancer drugs that specifically 
target DNA topoisomerase I (TopoI).  The for-
mation of a cleavable drug-TopoI-DNA complex 
results in lethal double-strand DNA breakage 
and cell death (Xu and Villalona-Calero, 2002). 
CPT-11 is a new semisynthetic derivative of camp-
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tothecin that is ultimately converted into the active 
metabolite SN-38 by carboxylesterase, which is at 
least 100-fold more cytotoxic than CPT-11 (Rokudai 
et al., 2002).  It has also been reported that expo-
sure to camptothecin derivatives induces apoptosis 
(Yoshida et al., 1993) and affects the cell cycle by 
inducing a dose-dependent delay in the S phase 
followed by dose-dependent trapping in the G2/M 
phase (Falk and Smith, 1992). However, the precise 
mechanisms of SN-38-induced apoptosis have not 
been elucidated.
 The phosphatidylinositol-3-OH kinase (PI3K)-
Akt signaling pathway is known to transmit sur-
vival-promoting signals and to protect a variety of 
cells from apoptosis (Franke et al., 1997).  After 
growth factor stimulation, PI3K is activated and 
generates phospholipid second-messenger mol-
ecules, phosphatidylinositol-3,4,5-trisphosphate 
(PIP3) and phosphatidylinositol-3,4-bisphosphate 
(PIP2), which cause a diverse set of cellular re-
sponses.  One target of PI3K is the serine/threonine 
kinase Akt [also known as protein kinase B or 
RAC-PK (Balendran et al., 1999)].  With the gen-
eration of PIP3 and PIP2 proteins by stimulation 
with growth factors and cytokines, Akt is recruited 
to the plasma membrane and is then phosphory-
lated at two key regulatory sites, Thr308 in the ac-
tivation loop of the catalytic domain and Ser473 in 
the COOH-terminal regulatory domain (Alessi et 
al., 1997).  The phosphorylation of Akt at Thr308 
is catalyzed by ubiquitously expressed PDK1 
(Datta et al., 1997; Le et al., 1998; Stephens et al., 
1998).  The kinase responsible for phosphoryla-
tion of Akt at Ser473 was reported to be PDK2 
[PDK1 bound to a fragment of PRK2 (Alessi et al., 
1997)]. Phosphorylation at both residues is neces-
sary for full activation of Akt and the subsequent 
regulation of many cellular processes. Activated 
Akt phosphorylates proapoptotic Bcl-2 family 
member Bad, caspase family member, caspase-9, 
Forkhead family transcription factor, FKHRL1, 
and IκB kinase, leading to cell survival (Kawato et 
al., 1991; Cardone et al., 1998; Brunet et al., 1999; 
Romashkova and Makarov, 1999).  Thus, PI3K-Akt 
signaling pathway inactivation might correlate with 
apoptosis.

 Here, we analyzed SN-38-induced apoptosis 
in human gastric cancer cell lines.  Our data sug-
gest that in some human gastric cancer cells, SN-38 
induces apoptosis, which might be partly explained 
by PI3K-Akt pathway inactivation.

 
Materials and Methods

Cell culture and reagents

MKN1, MKN28, MKN45, MKN74 and KATO-
III cells were purchased from the Riken Cell Bank 
and grown in RPMI-1640 supplemented with 10% 
fetal bovine serum, 100 units/mL of penicillin G 
sodium, 100 µg/mL of streptomycin sulfate and 
0.25 µg/mL of amphotericin B equilibrated with 
5% CO2 in air at 37˚C. SN-38 was obtained through 
Daiichi Pharm (Tokyo, Japan), and LY294002 was 
purchased from Sigma (St. Louis, MO). SN-38 and 
LY294002 were dissolved in dimethyl sulfoxide 
(DMSO).  Dilutions with DMSO were made imme-
diately before use to adjust the DMSO concentration 
in the growth medium to 0.1% for all experiments.

Growth inhibition experiments

The effect of the SN-38 on the proliferation of 
cells was evaluated using the sodium 3'-[1-(phenyl-
aminocarbonyl)-3,4-tetrazolium]-bis(4-methoxy-
6-nitro) benzene sulfonic acid hydrate (XTT) assay 
(Cell Proliferation Kit II, XTT; Roche Molecular 
Biochemicals, Mannheim, Germany).  The assay 
is based on the cleavage of the yellow tetrazolium 
salt XTT to form an orange formazan dye by meta-
bolically active cells.  Briefly, cells were seeded into 
96-well plates at a density of 2 × 103 viable cells per 
well in 100 µL medium.  After 24 h incubation, a 
different dose of SN-38 (0–500 nM) was added to 
quadruplicate wells.  Then after 72 h incubation, 50 
µL of the XTT was added to each well (final con-
centration 0.3 mg/mL), followed by further incuba-
tion for 4 h in a humidified atmosphere containing 
5% CO2 at 37˚C.  The absorbance of the samples 
was measured at 490 nm using a microplate reader 
(Wellreader; Seikagaku Corporation, Tokyo, Japan).  
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The dose giving 80% inhibition (ID80) was cal-
culated in terms of the absorbency in treated cells 
relative to the absorbency in untreated control cells.

Cell cycle analysis

Cell cycle distribution was analyzed by determin-
ing the DNA content and the sub-G1 peak corre-
sponding to the apoptotic cells using flow cytom-
etry.  MKN45 (3 × 106) and MKN1 (5 × 105) cells 
were seeded on 75 cm2 tissue culture dishes and 
allowed to grow overnight at 37˚C with 5% CO2.  
Cells were exposed to 50 µM LY294002 for 1 h, 
or not exposed.  Cells were next exposed to 20 nM 
or 250 nM SN-38 for 48 h, then collected, resus-
pended in 70% ethanol and stored at –20˚C until 
use. After fixation, cells were incubated for 20 min 
at 37˚C with RNase A (50 µg/mL) and then for 10 
min at room temperature with propidium iodide (50 
µg/mL).  After samples were filtered through 35-
µm nylon mesh, stained cells were analyzed with 
an FACS Calibur Cytometer (Becton Dickinson, 
Franklin Lakes, NJ).

Detection of apoptotic cells 

Apoptosis was detected morphologically.  Trypsin-
ized adherent and floating cells were washed with 
phosphate buffered saline and pelleted.  After fixa-
tion with 3.5% formalin solution, apoptotic cells 
were assessed morphologically by staining with 
Hoechist 33342, using ultraviolet laser microscope 
(Optiphoto-2, Nikon, Tokyo).

Western blot analysis

MKN45 and MKN1 cells were treated with LY294002 
and/or SN-38 as in the case for cell cycle analy-
sis.  The cells were lysed in a sample buffer [Tris-
HCl (pH 6.8), SDS, glycerol, bromophenol blue] 
containing protease inhibitor (complete, mini; 
Roche Molecular Biochemicals).  Following soni-
cation, the total protein was quantified by a BCA 
method (BCA Protein Assay Kit; Pierce, Rockford, 
IL).  Each boiling sample (60 µg protein/lane) was 
separated by 10% SDS-PAGE and blotted onto a 

poly vinilidene difluoride Immobilon membrane.  
The antibodies used in this study were anti-phospho 
Akt (Ser473) polyclonal antibody (#9271, Cell Sig-
naling Technology, Beverly, MA), anti-phosphatase 
and tensin homologue deleted on chromosome 10 
(PTEN) polyclonal antibody (#21940, Upstate Cell 
Signaling Solutions, Charlottesville, VA) and anti-
β-actin monoclonal antibody (AC-15, Sigma).  

Results

The effect of SN-38 on cell viability and 
apoptosis in MKN1 and MKN45 cells

We first examined the susceptibility of the two hu-
man gastric cancer cell lines, MKN1 and MKN45, 
to SN-38 treatment.  Figure 1 shows the dose-
dependent cytotoxic effect of SN-38 against MKN1 
and MKN45 cells using an XTT cell proliferation 
assay kit.  The ID80s of MKN45 and MKN1 cells 
were 20 nM and 250 nM, respectively.  We also ex-
amined the susceptibility of three other human gas-
tric cancer cell lines, MKN74, MKN28 and KATO-
III cells.  ID80s of MKN74, MKN28 and KATO-III 
cells were 15 nM, 200 nM and 30 nM, respectively. 
MKN45, MKN74 and KATO-III cells showed high 
sensitivity to SN-38 (ID80 < 50 nM), and MKN1 
and MKN28 cells showed low sensitivity to SN-38 
(ID80 > 100 nM).  Then we used MKN45 and 

Fig. 1.  XTT assay of MKN1 and MKN45 cells treated 
with SN-38. The rates of MKN1 cells are shown by open 
circles, and those of MKN45 cells, by closed circles.
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MKN1 cells as the representative cell lines for the 
following studies.
 Then, we examined the effect on the cell cycle 
in MKN1 and MKN45 cells after SN-38 treat-
ment using fl ow cytometry.  An evident apoptotic 
sub-G1 fraction was shown in MKN45 cells 48 
h after treatment with 250 nM SN-38 (Fig. 2A).  
We further confirmed SN-38-induced apoptosis 
of MKN45 cells morphologically by fluorescence 
microscopy with a Hoechst 33342:  250 nM SN-38 
induced apoptosis in MKN45 cells, in which there 
were condensed and fragmented nuclei (Fig. 2B).  
However, MKN1 cells treated with 250 nM SN-38 
suffered delays in the S phase (Fig. 3A) and had a 
few apoptotic cells (Fig. 3B).  As shown in Fig. 4, 

the apoptotic sub-G1 fractions of the population of 
MKN45 and MKN1 cells 48 h after treatment with 
250 nM SN-38 were 36.8 and13.5%, respectively.  

pAkt and PTEN expression after treatment 
with SN-38 in gastric cancer cell lines

Next, we examined pAkt and PTEN expression 
after treatment with SN-38 by Western blotting.  In 
MKN45 cells, the expression levels of pAkt were 
reduced in a dose-dependent manner by SN-38 
(Fig. 5).  On the other hand, the expression levels of 
pAkt were not affected by SN-38 in MKN1 cells.  
The expression levels of PTEN were not affected in 
either cell line (Fig. 5).

Fig. 2.  Apoptosis of MKN45 cells by SN-38.  
 A: Flow cytometry of MKN45 cells treated with 20 nM or 250 nM SN-38 for 48 h.  
 B: Fluorescent microscopy of MKN45 cells treated with 250 nM SN-38 for 48 h, and stained with Hoechst 

33342 fl uorescent dye.
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