Table 1. The relative retention times of internal standard compounds and authentic bile acids

| Internal standard compounds                                                     | Retention<br>time | Relative retention time |       |       |       |
|---------------------------------------------------------------------------------|-------------------|-------------------------|-------|-------|-------|
| (1) 7 $\alpha$ ,12 $\beta$ -Dihydroxy-5 $\beta$ -cholanoic acid                 | 24.110            | 1.000                   | 0.954 | 0.888 | 0.840 |
| (2) $7 \alpha$ , $12 \alpha$ -Dihydroxy- $5 \beta$ -cholanoic acid              | 25.279            | 1.048                   | 1.000 | 0.931 | 0.880 |
| (3) 7 β, 12 α-Dihydroxy-5 β-cholanoic acid                                      | 27.162            | 1.127                   | 1.074 | 1.000 | 0.946 |
| $\langle 4 \rangle$ 7 $\beta$ ,12 $\beta$ -Dihydroxy-5 $\beta$ -cholanoic acid  | 28.713            | 1.191                   | 1.136 | 1.057 | 1.000 |
| Authentic compounds                                                             |                   |                         |       |       |       |
| (5) Cholesterol                                                                 | 25.102            | 1.041                   | 0.993 | 0.924 | 0.874 |
| (6) Lithocholic acid                                                            | 24.016            | 0.996                   | 0.950 | 0.884 | 0.83  |
| (7) 3 β -Hydroxy-5-cholenoic acid                                               | 28.102            | 1.166                   | 1.112 | 1.035 | 0.97  |
| (8) 3 $\alpha$ , 12 $\beta$ -Dihydroxy-5 $\beta$ -cholanoic acid                | 29.915            | 1.241                   | 1.183 | 1.101 | 1.042 |
| (9) Deoxycholic acid                                                            | 30.972            | 1.285                   | 1.225 | 1.140 | 1.07  |
| (10) Chenodeoxycholic acid                                                      | 32.678            | 1.355                   | 1.293 | 1.203 | 1.13  |
| (11) Norcholic acid                                                             | 33.513            | 1.390                   | 1.326 | 1.234 | 1.16  |
| (12) Hyodeoxycholic acid                                                        | 33.877            | 1.405                   | 1.340 | 1.247 | 1.18  |
| (13) Ursodeoxycholic acid                                                       | 34.810            | 1.444                   | 1.377 | 1.282 | 1.21  |
| (14) 3 $\beta$ , $7\beta$ -Dihydroxy-5 $\beta$ -cholanoic acid                  | 35.579            | 1.476                   | 1.408 | 1.310 | 1.23  |
| (15) 3 $\alpha$ ,7 $\alpha$ ,12 $\beta$ -Trihydroxy-5 $\beta$ -cholanoic acid   | 37.193            | 1.543                   | 1.471 | 1.369 | 1.29  |
| (16) Cholic acid                                                                | 39.672            | 1.645                   | 1.569 | 1.461 | 1.38  |
| (17) 3 $\alpha$ , 7 $\beta$ , 12 $\alpha$ -Trihydroxy-5 $\beta$ -cholanoic acid | 40.570            | 1.683                   | 1.605 | 1.494 | 1.41  |
| (18) Hyocholic acid                                                             | 42.879            | 1.778                   | 1.696 | 1.579 | 1.49  |
| (19) 3 $\alpha$ , 7 $\alpha$ -Dihydroxy-12-oxo-5 $\beta$ -cholanoic acid        | 43.790            | 1.816                   | 1.732 | 1.612 | 1.52  |

Gas chromatographic condition was programmed at  $250^{\circ}$ C for 5 min, from  $250^{\circ}$ C to  $270^{\circ}$ C at  $0.2^{\circ}$ C/min, at  $270^{\circ}$ C for 10 min, from  $270^{\circ}$ C to  $280^{\circ}$ C at  $0.5^{\circ}$ C/min, and then at  $280^{\circ}$ C for 30 min.

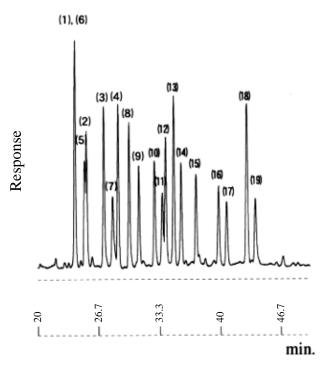
Capillary column, Hicap CBP-1 capillary column(25m x 0.25mm I.D).

Bile acids were derivatized to methyl ester DMES ether.

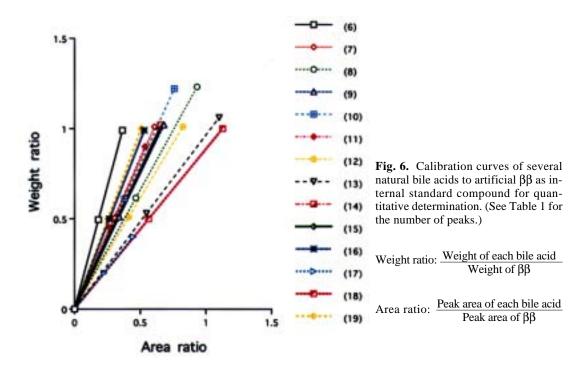
both peaks of  $\alpha\beta$  and lithocholic acid practically pile up in the same gas chromatogram (Fig. 5).

Calibration curves for the quantitative determination of several bile acids have a linear relationship going through the origin between the weight ratio and the peak area ratio of each bile acid to the internal standard compound(s).

By way of example, the linear calibration curves for several bile acids are shown in Fig. 6 when  $\beta\beta$  is used as an internal standard compound. Then, the absolute amount of each bile acid in a biological sample can be calculated by the following formula (Arimoto et al., 1982).


$$W = A \times B$$

W: Absolute amount (weight) of each bile acid in the sample assayed.


A: Weight ratio of each bile acid to  $\beta\beta$ , obtained by multiplying the slope value of the calibration curve by the peak area ratio of each bile acid peak to  $\beta\beta$  peak from the gas chromatogram.

B: Amount (weight) of internal standard compound added in the biological sample. Total bile acid amounts in an analytical sample can be calculated by adding the amounts of all kinds of bile acids analyzed.

Occasionally confirming the calibration curve is recommended.



**Fig. 5.** Gas chromatogram of authentic bile acids and internal standard compounds (methyl ester DMES ether). (See Table 1 for the number of peaks and gas chromatographic condition.)

