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noted in 2 of the small AAAs.  A higher expres-
sion of MMP-2 was also noted in 1 of the 3
aneurysms of the control group.  On the other
hand, MMP-9 showed lower or almost no ex-
pressions in all the specimens examined.

Discussion

This study analyzed the relationship between
the development of AAAs and the expression of
MMP-2, MMP-9 and TIMP-1 in the aortic
walls.  The AAAs were subclassified into 2
categories due to the diameter of AAAs; small
type being 45 mm or less, and medium-large
type being greater than 45 mm.  This classifica-
tion is based on a previous observation, which
confirmed that AAAs with diameters greater
than 45 mm showed a higher frequency of aneu-
rysmal rupture (Kanaoka et al., 1999).  Maeda
et al. (1996) described 3 stages of AAA pro-
gression; development, growth and rupture.
They corrected the diameter of AAAs followed
by body height as a congenital factor and by age
as an acquired factor, and found that small and
medium-large AAAs corresponded well to the
stages of growth and rupture, respectively.

The present study confirmed the highest
expression of MMP-2 mRNA as well as protein
levels among the 3 molecules.  The expression
was significantly higher in the small-diameter
AAAs than in the controls, suggesting the in-
volvement of MMP-2 in the growth of AAAs.
This is partially consistent with the report by
Freestone et al. (1995), who found that the
production of MMP-2 protein was higher in the
AAAs of 40 to 55 mm in diameter.  Moreover, it
is well known that MMP-2 is expressed only in
small amounts in obstructive arteriosclerotic
lesions (Freestone et al., 1995; Davis et al.,
1998).  Thus, it is conceivable that MMP-2
might play a crucial role in the development and
growth, i.e., an early stage of AAAs.

Fig. 4.  Scatter diagrams show the expressions of matrix metalloproteinase (MMP)-
2, MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1 mRNA in small
abdominal aortic aneurysms (AAAs) [ n = 6] and medium-large AAAs [n = 14] and
in control specimens [n = 10].  The RNA amount is presented as a percentage to
glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
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Table 3.  mRNA expressions of MMP-2, MMP-9 and TIMP-1 in the small and medium-large
AAAs and controls

MMP-2 MMP-9 TIMP-1

Controls [10] 0.02 ± 0.03       
*

0.001 ± 0.002     
*

   ** 0.01 ± 0.03
Small AAAs [  6] 3.17 ± 6.04 0.03   ± 0.03 0.58 ± 0.98
Medium-large AAAs [14] 0.10 ± 0.20 0.02   ± 0.05 0.29 ± 0.47
[  ], number of specimens
AAA, abnormal arotic aneurysm; MMP, matrix metalloproteinase; mRNA, messenger RNA; TIMP, tissue
inhibitor of metalloproteinase.
*P < 0.05; **P < 0.01.

Both small and medium-large AAAs show-
ed higher expressions of MMP-9 than controls.
When the medium-large AAAs were divided
into 2 subgroups by size, the mean expression
ratio of MMP-9 mRNA was higher in the

medium-type AAAs than in the large-type
AAAs, although the difference was not sig-
nificant.  Similar results were reported by
McMillan et al. (1997), who divided AAAs into
3 groups; small (less than 49 mm), medium

Table 4.  Correlation of MMP-2, MMP-9 and TIMP in the small, medium-large and total AAAs
and controls

Small AAA Medium-large AAA AAA Controls

MMP-2 and MMP-9 –0.20 [6] 0.62 [15]* 0.46 [21]* 0.06 [10]
MMP-2 and TIMP-1 0.26 [6] 0.42 [14] 0.30 [20] 0.39 [10]
MMP-9 and TIMP-1 0.77 [6] 0.75 [15]** 0.70 [21]** 0.52 [11]
[  ], number of specimens
AAA, abnormal arotic aneurysm; MMP, matrix metalloproteinase; TIMP, tissue inhibitor of metallo-
proteinase.
Spearman’s correlation coefficient by rank (*P < 0.05, **P < 0.01).
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Fig. 5.  Correlations between matrix metalloproteinase (MMP)-9 and tissue inhibitor of metalloproteinase
(TIMP)-1.  There is a significant correlation between TIMP-1 and MMP-9 in AAAs [n = 21, r = 0.70, P <
0.01] (left), especially in medium-large AAAs [n = 15, r = 0.75, P < 0.01] (right).  The RNA amount is
presented as a percentage to glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
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(50–69 mm) and large (more than 70 mm).
They found a significantly higher expression in
the medium type than in the small or large type.
In other words, the MMP-9 expression obvious-
ly decreased in the large AAAs.  Moreover, im-
munohistochemistry confirmed a diffuse dis-
tribution of MMP-9-positive cells in the entire
aneurysmal wall, in contrast to mainly intimal
localization of MMP-2- and TIMP-1-positive
cells.  In spite of the expression ratio of MMP-9
being lower than that of MMP-2, the results
indicated that MMP-9 might influence the dis-
order of elastin metabolism and participate in
the growth stage of AAAs, as suggested by
McMillan et al. (1997).

It is of interest that the MMP-2 and MMP-9
expressions well correlated in the medium-
large AAAs, but not in the small AAAs.  The
simultaneous lower expressions of MMP-2 and
MMP-9 could imply that the gene expression
might be regulated by the aneurysmal stroma or
the cell-stromal interaction in the remodeled
aneurysmal wall.

TIMP-1 has been shown to inhibit the activ-
ity of MMPs and to prevent the degeneration of
elastic fibers, as well as development and rup-
ture of AAAs (Birkedal-Hansen et al., 1993;
Allaire et al., 1998).  In the present study, the
TIMP-1 expression significantly correlated
with MMP-9 in the medium-large AAAs, sug-
gesting that TIMP-1 might inhibit MMP-9 in a
reactive or protective manner.  In fact, there was
no significant correlation between the ex-
pressions of TIMP-1 and MMP-9 in the small
AAAs and control specimens.  Although there

was no statistical correlation between the ex-
pressions of TIMP-1 and MMP-2, there was a
tendency for the TIMP-1 expression to increase
along with the MMP-2 expression.

In conclusion, this study demonstrated that
MMP-2 and MMP-9 play crucial roles in the
development or growth of AAAs, and that
TIMP-1 inhibits their proteinase activity.  The
precise roles of other MMP and TIMP family
molecules, such as TIMP-2, await further clarif-
ication.
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