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Fig. 5.  Scanning (a) and transmission (b) electron micrographs of a rat cornea preserved at 0˚C for 1 day.
a: The cell surface protrudes slightly (*) and the cell boundaries are clearly visible (bar = 10 µm).
b: Mitochondria show slight swelling (M) and other intracellular organellae are relatively well preserved

(bar = 1 µm).
Fig. 6.  Scanning (a) and transmission (b) electron micrographs of a rat cornea preserved at 0˚C for 2 days.

a: The cell surface is irregular and the cell boundaries are just recognizable.  Some elongated microvilli
(arrows) are observed (bar = 10 µm).

b: The mitochondria (M) become swollen, but their cristae are partly preserved.  The rough-surfaced
endoplasmic reticulum (E) is relatively well preserved (bar = 2 µm).

Fig. 7.  Scanning (a) and transmission (b) electron micrographs of a rat cornea preserved at 0˚C for 7 days.
a: The cell surface is almost intact.  The microvilli on the peripheral margin of the endothelium are

markedly elongated (arrows) (bar = 10 µm).
b: The mitochondria are vacuolated and no cristae are visible (M).  The rough-surfaced endoplasmic

reticulum is swollen (E).  The density of the cytoplasmic matrix decreases in the basal region of the
cells (bar = 1 µm).
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–196˚C made it possible to prolong storage
periods for up to a year or longer, freezing and
thawing cause structural damage to the endo-
thelium (Capella et al., 1965; Van Horn et al.,
1972; Doughman, 1988).  Thus, it is logically
assumed that organs should be stored at the
lowest temperature possible without freezing
(Yoshida et al., 1999).

All organic matter has its own specific sub-
zero freezing temperature:  –1.0˚C in the rat
liver (Yoshida et al., 1999), –0.6˚C in the rat
heart (Wicomb and Cooper, 1984) and –0.8˚C
in human plasma (Storey and Storey, 1990).
Since the rat corneal endothelium is very thin, it
is impossible to measure its freezing point with
a thermometer.  In this study, we tried to pre-
serve corneas at 0˚C, assuming that corneas do
not freeze at this temperature.

Previously, Taylor et al. (1989a,1989b) stored
rabbit isolated corneas at 0˚C.  They reported
that the endothelial ultrastructure was main-
tained during storage for 3 and 5 days in a hyper-
kalemic solution, CPTES*.  According to their
transmission electron microscopic findings, the
mitochondria showed moderate swelling with a
diffuse pallid matrix,  as well as condensed and
beaded forms.  The smooth endoplasmic reticu-
lum was swollen and vesiculated.  Their ultra-
structural findings were almost identical to the
present study.  According to their method, poly-
propylene vials containing a preservation medi-
um were placed in an evacuated Dewar flask
containing ice in a 4˚C refrigerator.  In this study,
we used a special refrigerator that can precisely
control the temperature from room temperature
to –5.0˚C at 0.1˚C intervals (Yoshida et al.,
1999).

Nowadays, Optisol (Steinemann et al., 1993)
and Dexsol (Skelnik et al., 1988; Lass et al., 1990)
(Chiron Co., Irvine, CA) are used by most eye
banks in the United States as solutions for pre-
serving isolated corneas at 4˚C.  These solutions
have enabled their preservation for up to 1 week
(Bourne, 1991).  Although the corneoscleral
preservation has increased in Japan, it has not
been widely used all over the world (Shimazaki
et al., 1993).  In this study, we preserved rat

whole globes at 0˚C in EP-II, which has been
generally used for whole globe preservation in
Japan.

Fluid movement in the corneal endothelium
is thought to be related to a pump-leak transport
mechanism in which fluid from the anterior
chamber leaks into the stroma across a leaky
apical junction, while fluid is actively pumped
from the stroma into the anterior chamber
(Barry et al., 1995).  The Na+-K+ ATPase pump
of the corneal endothelium has been described
by many investigators:  the pump is located in
the lateral membrane and actively transports
sodium and bicarbonate ions into the anterior
chamber; along this osmotic gradient, water
moves from the stroma to anterior chamber
(Klyce and Beuerman, 1988; Dohlman, 1994;
Edelhauser et al., 1994; Barry et al., 1995).
Hodson (1971) demonstrated that perfusion
with a bicarbonate free medium caused revers-
ible stromal swelling.  Thus, it was presumed
that the pump was partly inactivated by the re-
moval of bicarbonate (Hodson, 1971).  Since
EP-II does not contain bicarbonate ions, it
extends the lifetime of the corneal endothelium
by controlling pump function consumption.

The present scanning electron microscopic
study showed no significant ultrastructural dif-
ferences in the endothelial surfaces of corneas
preserved at either 4˚C or 0˚C for up to 2 days.
After 7 days’ storage at 4˚C, the cells showed
marked destruction (Fig. 4a), but were fairly-
well preserved at 0˚C.  Furthermore, transmis-
sion electron microscopic findings indicated
that the corneal endothelium preserved at 4˚C
showed more distinct mitochondrial swelling
than that preserved at 0˚C.  These changes be-
came evident after 7 days’ storage (Figs. 4b and
7b).  Ultrastructural changes were also noted in
the corneas preserved at 0˚C:  the presence of
vacuoles, condensation of the mitochondrial
matrix, a swollen rough-surfaced endoplasmic
reticulum and a decrease in the cytoplasmic
density in the basal region.  However, most of
the surface cell membrane and cell organellae
were retained (Fig. 7b).  The density of the
cytoplasmic matrix decreased in the basal re-

 *CPTES:  corneal-potassium-TES, a potassium-rich balanced salt solution containing the impermeant
biological buffer compound N-Tris(hydroxymethyl)methyl-2-amino ethane sulphonate.
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gion of the endothelia preserved for 1 and 2
days at 4˚C or 7 days at 0˚C (Figs. 2b, 3b and
7b).  This may have been due to the leakage of
fluid into the paracellular space across the leaky
apical junction.

There were fewer ultrastructural changes in
the corneal endothelia preserved at 0˚C than
those at 4˚C, which are thought to be reversible.
Since the endothelial metabolism below 0˚C is
reduced in comparison with that at 4˚C, con-
sumption of ATP and activity of the Na+-K+

ATPase pump are minimized in an endothelium
preserved at 0˚C.  Recently, Yoshida (1999) re-
ported that the concentration of ATP in the rat
liver preserved at –0.8˚C was higher than that at
4˚C.  Thus, the lifetime of the endothelial cells
is extended if they are preserved at 0˚C.

The utilization of corneas preserved as
whole globes at 4˚C is restricted to within 48 h,
because the endothelium is exposed to stagnant
aqueous humor which has metabolic waste
products and tissue necrosis (Bito and Salvador,
1970; McCarey and Kaufman, 1974).  The pres-
ent findings indicate the possibility for longer
preservation of whole globes if they are stored
at 0˚C.
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