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supranuclear region, usually representing a “U”
shape as a whole (Fig.3).   Most of the Golgi
vacuoles and vesicles having been unconnected
to membranous structures were generally re-
moved during the specimen preparation proce-
dure.  However, Golgi vesicles firmly attached
to the Golgi cisternae were preserved.  The
mitochondria, surrounded by the meshwork of
the ER, were rod-shaped, branching and anasto-
mosed to each other (Figs. 2 and 4).

The tubular smooth ER appeared to be con-
tinuous all over the interior of the ciliated cells.
The rough ER with ribosomes was sometimes
observed around the Golgi apparatus and nu-
cleus.

Conventional rats

Ciliated cells were a major component of the epi-
thelium.  Mucous cells were often seen between
the ciliated cells (Fig. 1a), and non-ciliated cells
were scarcely visible.

Many cilia, together with a few microvilli,
were distributed on the apical surface of the

ciliated cells (Fig. 2a).  The Golgi apparatus
was highly developed and many Golgi vesicles
were attached to the lateral margin of the Golgi
cisternae (Fig. 3a).  The Golgi stack was com-
posed of five to eight flattened cisternae which
were piled up in close parallel array.

The plate-like rough ER was observed
around the nucleus (Fig. 4a).  Many ribosomes
were attached to the surface, some of them
forming polysomes.  The rough ER had a few
fenestrations about 0.02 to 0.2 µm in diameter.
The tubular smooth ER extended from the
margin of the rough ER, linking to the adjacent
rough ER.

SPF rats

The surface of the trachea was composed of
ciliated cells and non-ciliated cells.  The ciliat-
ed cells were less frequently observed in SPF
rats than in conventional rats (Fig. 1b).  Mucous
cells were also less frequently visible than in
conventional rats.  The apical surface of the
non-ciliated cells was covered with short micro-

Fig. 3.  The Golgi apparatus of tracheal ciliated cells in a conventional rat (a) and a SPF rat (b).  a: The Golgi
stack is composed of five to eight flattened cisternae which are piled up in a close parallel array.  Note
numerous Golgi vesicles (arrows).  × 23,000.  b: The Golgi stack is composed of four to seven fenestrated
cisternae.  × 28,000.
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villi, bulging into the tracheal lumen.  The cilia
were not so highly developed as in conventional
rats.  Instead, numerous microvilli were visible
(Fig. 2b).  The Golgi apparatus was not so highly
developed either.  The Golgi stack was composed
of four to seven cisternae.  Golgi vesicles
attached to the Golgi cisternae were fewer than
those in conventional rats.

The ER in the perinuclear space was mostly
smooth and tubular.  The rough ER was scarce-
ly visible (Fig. 4b).

Discussion

The intracellular structures of tracheal ciliated
cells have been precisely examined by trans-
mission electron microscopy (TEM) (Rhodin
and Dalhamn, 1956; Jefferry and Reid, 1975;
Marin et al., 1979).  However, it has been diffi-
cult to understand the three-dimensional
configuration of intracellular structures by two-
dimensional TEM images.  Although the devel-

opment of specimen preparation for SEM made
it possible to demonstrate intracellular struc-
tures three-dimensionally (Tanaka, 1980;
Tanaka and Naguro, 1981; Inoué, 1982; Tanaka
and Mitsushima, 1984; Inoué, 1985; Inoué and
Osatake, 1989), intracellular structures of the
tracheal ciliated epithelium have not been suf-
ficiently studied by SEM.  The osmic macera-
tion procedure of the A-O-D-O method (Tanaka
and Mitsusima, 1984) was effective to remove
excess cytoplasmic matrices, thus intracellular
structures such as the mitochondria, ER and
Golgi apparatus were three-dimensionally ob-
served as shown in Figs. 1 to 4.

The tracheal surface of conventional rats
was densely covered with cilia as reported by
Alexander et al. (1975).  In contrast, there were
fewer ciliated cells in SPF rats than in conven-
tional rats.  Non-ciliated cells of SPF rats were
more often visible than those of conventional
rats.  The mucous cells were more frequently
observed in conventional rats than in SPF rats.
This apparently indicates that ciliated cells and

Fig. 4.  The perinuclear intracellular structures exposed by the removal of the nucleus.  a: A conventional rat.
The tubular smooth endoplasmic reticulum extends from the margin of a plate-like rough endoplasmic
reticulum.   The rod-shaped mitochondria run parallel to the long axis of the cell.  × 14,000.  b: A SPF rat.  A
network of the tubular smooth endoplasmic reticulum is observed in the perinuclear region; the rough
endoplasmic reticulum is not as highly developed as in conventional rats.  × 17,000.
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mucous cells are closely related to microorgan-
isms in the air.

The most interesting finding obtained in this
study was a three-dimensional network of the
smooth ER.  This network appeared to be
continuous all over the interior of the ciliated
cells.  Such continuity of the ER has been shown
three-dimensionally in rat spermatids by SEM
(Inoué, 1982).  An intensive network was de-
monstrated beneath the basal bodies, partly
enclosing the underlying mitochondria (Fig.2).
An amorphous layer, referred to as the hypo-
basal hyaline zone, was described between the
basal bodies and underlying mitochondria by
light microscopy (Hioki, 1942).  Later, electron
microscopy proved that the hypobasal hyaline
zone contains the smooth ER (Graf and
Stockinger, 1966), which is identical to the
intensive ER network demonstrated in this
study.

Kanamura (1975) considered that tracheal
ciliated cells probably require a large amount of
glucose-6-phosphate for ciliary movement.  In
addition, acetylcholine has been proven to have
a close relationship with this movement
(Kordik et al., 1952; Burn, 1954; Salathe and
Bookman, 1995).  Graf and Stockinger (1966)
proved acetylcholinesterase activity in the ER
of rat respiratory ciliated cells using histo-
chemical techniques.  Rhodin (1960) speculated
that mitochondria under the basal bodies fur-
nish the energy required for the ciliary beat.
The close relationship between the smooth ER,
basal bodies and mitochondria indicates that
these intracellular organelles under the basal
bodies are engaged in the supplementation of
energy  for ciliary movement.

This study showed that the Golgi apparatus
and rough ER were highly developed in  con-
ventional rats (Fig. 3), but less so in SPF rats.
The development of the Golgi apparatus can be
estimated by the increased number of the Golgi
cisternae and Golgi vesicles. Although no sig-
nificant morphological differences were noted
in the smooth ER under the basal bodies (Fig.
2), the plate-like rough ER was seen in the
perinuclear region only in conventional rats
(Fig. 4a).  Since proteins, including enzymes,
are synthesized and processed in the Golgi

apparatus and rough ER, it is reasonable that
such intracellular structures are highly develop-
ed for ciliary formation and movement.  Proba-
bly, protein synthesis can be activated in con-
ventional rats, thus the tubular smooth ER
transformed into a plate-like rough ER.

Aoki et al. (1986) demonstrated that perox-
idase activity in the rat tracheal epithelium was
higher in conventional rats than in SPF rats.
Kinbara et al. (1992) also showed similar
findings in peroxidase activity, suggesting that
peroxidase plays a role in mucosal antimicro-
bial defense mechanisms.  However, the rela-
tionship between the peroxidase activity and
intracellular morphology has not been clarified.
The present morphological study on intra-
cellular structures has been proven useful as an
another approach when considering the defense
mechanism of tracheal ciliated cells.
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