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spikes (Wong et al, 1979; Llinas and Sugimori,
1980; Ross and Werman, 1987; Tank et al.,
1988; Regehr et al 1989; Jaffe et al., 1992;
Yuste et al., 1994).  In contrast to the abundant
expression of the TSC2 gene in these large- or
medium-sized neurons, cells in the cerebellar
granule layer which were characterized by their
tiny cell size and poor dendritic structures
(Palay and Chan-Palay, 1974) expressed a
lesser amount of TSC2 signals, despite having
the highest cell density in the layer.  Also, small
non-neural cells like oligodendrocytes or astro-
cytes which exist abundantly in the striatal
regions rich in dendrites and fiber tracts appear-
ed not to be stained by TSC2 mRNA signals, as
seen in the radiatum, oriens and molecular layer
of the hippocampus (Fig. 2).

Current studies on the molecular and cell-
ular basis for memory and learning have accu-
mulated evidence that the hippocampal pyrami-
dal neurons, dentate granule cells, cortical
pyramidal neurons and cerebellar purkinje cells
showed a long-term potentiation (LTP) (Bliss
and Lomo, 1973; Artola and Singer, 1987; Brown
et al., 1988; Bashir et al., 1991; Madison et al.,
1991; Bliss and Collingridge, 1993) or long-term
depression (LTD) (Ito et al., 1982; Kano and
Kato, 1987; Ito, 1989) thought of as activity-
dependent long-term changes in synaptic effi-
cacy.  On the other hand, the morphological

cells of the cerebellum and motor
neurons in the medulla at high levels,
and (ii) that the intermediate levels of
TSC2 signals are expressed in most
neurons of the cerebral cortex, septum,
striatum, reticular formation in the
medulla and substantia nigra compacta.

In the brains from individuals
affected with TSC, cortical tubers,
periventricular nodules and giant cell
astrocytoma are the characteristic
les ions  (Gomez,  1988) .   These
hamartomas in the central nervous
system are considered to be due to errors
in differentiation and migration of
germinal cells (Nishimura et al., 1985),
which result from loss of heterozygosity
for the TSC2 gene observed in the
abnormal tissues.  Because of the
heterozygosity of TSC2 DNA markers on
chromosome 16p13.3 in most affected cells, a
lesser amount of TSC2 products must be
observed in normal tissues of the brain from
TSC patients.  However, neurons in the normal
tissues from TSC patients do not exhibit any
other degenerative features, even with the
reduced amount of TSC gene products.  To-
gether with this lack of degenerative features of
neurons in the brain from TSC patients, from
the present finding on the high levels of TSC2
gene expression in the specific types of neurons
in the normal brain, the possibility emerges that
the function of TSC2 gene products in mature
neurons may be quite other than proliferation,
differentiation or a tumor suppressor function.

The most abundant expression of the TSC2
gene was exhibited specifically in large- or
medium-sized neurons of the hippocampal
pyramidal layer, dentate granular layer, piri-
form cortex, striatum, cerebellar purkinje cell
layer and medullary motor nucleus, which  all
had the common feature of well-developed
dendritic trees  (McGeer et al., 1978).  Especial-
ly, as novel imaging and electrophysiological
techniques have revealed, these cerebellar
Purkinje neurons, cortical pyramidal and hippo-
campal pyramidal neurons have active den-
drites of which entire trees are covered with
calcium channels and demonstrate calcium

Table 1.  Degree of TSC2 gene expression in vari-
ous types of neurons

 Brain region           Neuron type                TSC2 gene
   expression

Cerebral cortex Most neurons ++
Septum Most neurons +
Piriform cortex Most neurons +++
Striatum Medium neurons ++

Large interneurons +++
Hippocampus Pyramidal cells +++

Dentate granule cells +++
Helus neurons +++

Substantia nigra Neurons of the pars compacta +
Cerebellum Purkinje cells +++

Granule cells +
Medulla Neurons of reticular formation +

Neurons of the facial nucleus +++

Degree of expression:  +++,  high; ++, moderate; +, slight.
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basis for memory and learning was considered
to lie in modifications of synaptic connec-
tivities, especially in the activity-dependent
changes of the dendritic spines as a result of
intracellular molecular alterations in response
to repeated stimulation (Guthrie et al., 1991;
Muller and Connor, 1991; Lisman and Harris,
1993; Shepherd, 1994).  It has been reported
that the TSC2 gene product shares a region of
homology with the GTPase-activating protein
for rap1 which is predicted to interact with rap1
(Wienecke et al., 1995).  This relation of the
TSC2 gene product with rap1, which functions
in the regulation of cytoskeletal interaction in
mammalian platelets and in the budding of
yeast cells (McCabe et al., 1992; White et al.,
1992), strongly supports the notion that the
TSC2 gene product may function in the forma-
tion of the dendritic spines, thus conferring
synaptic plasticity to neurons.  Since neurons
showing the highest TSC2 expression were of
the cell types which were deeply involved in
long-term memories and were rich in synaptic
plasticity, it is likely that TSC2 gene products
play a role in building and maintaining the
higher functions of neuron networks for mem-
ory and learning.

Therefore, the possible function of the TSC2
gene product in the formation of dendritic spines
and the use-dependent modification of synaptic
connectivities may be relevant to mental retar-
dation observed in TSC patients.
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